Parametric Study of Flow and Combustion Characteristic in a Cavitied Scramjet with Multi-Position Injection

Author:

Xi Wenxiong1,Liu Pengchao1,Shao Qihan1,Guo Wenjie1,Liu Jian1ORCID

Affiliation:

1. Research Institute of Aerospace Technology, Central South University, Changsha 410012, China

Abstract

This study focuses on the three-dimensional flow and combustion characteristics of a cavitied scramjet engine with multi-position injection. A single-equation large eddy simulation (LES) turbulence model is employed, with a detailed reaction mechanism for hydrogen combustion, as described by Jachimowski. The combustion characteristics of hydrogen in the scramjet combustion chamber are analyzed. Based on the combustion chamber model, the influence of different equivalence ratios, injection timing, injection positions, and injection pressures on the flame formation and propagation process are compared. The results indicate that within a certain range, an increase in the equivalence ratio enhances the combustion intensity and chamber pressure. In the case of multi-position injection, the order of injection from different nozzles has little effect on the final flame stabilization mode and pressure distribution. The opposite-side distribution of nozzles can effectively improve the fuel efficiency and the internal pressure. Furthermore, when the nozzles are closely placed in the opposite-side distribution, the combustion efficiency increases, although this leads to a higher total pressure loss. In scenarios where the fuel injection duration is short, an increase in the injection pressure at the upstream nozzles of the cavity results in a higher local equivalence ratio, as well as reduced fuel mixing and ignition time.

Funder

Key Laboratory Continuously Supporting Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3