Abstract
This study was focused on the growth of multi-walled carbon nanotubes (MWCNTs) on iron chloride-functionalized silica microspheres. In addition, the microwave absorption potential and the subsequent heat production of the resulting structures were monitored by means of infrared thermometry and compared with pristine commercially available MWCNTs. The functionalized silica microparticle substrates produced MWCNTs without any amorphous carbon but with increased structural defects, whereas their heat production performance as microwave absorbents was comparable to that of the pristine MWCNTs. Two-minute microwave irradiation of the SiO2@CNTs structures resulted in an increase in the material’s temperature from ambient temperature up to 173 °C. This research puts forward a new idea of charge modulation of MWCNTs and sheds light on an investigation for the development of bifunctional materials with improved properties with respect to efficient microwave absorbance.
Subject
Mechanics of Materials,Biomaterials,Civil and Structural Engineering,Ceramics and Composites
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献