Abstract
An accurate estimation of soil permeability is essential in geotechnical engineering. Transparent soil provides a promising experimental material to visualize pore-scale fluid flow, although the permeability characteristic of transparent soil remains unclear. As a result of the replacement of the fluid and solid phase, the permeability coefficient of transparent soil is usually several times or even more than ten times smaller than that of natural soil with the same particle size distribution and porosity. Fused quartz sand is used as the solid phase in this proposed transparent soil, which exhibits a similar mechanical behavior but different permeability to those of natural sand. Due to its low cost and eco-friendly characteristic, a mixture of mineral oil and aliphatic hydrocarbon is proposed as the liquid phase, which can achieve the same refractive index as the fused quartz sand after calculating the material proportion. Through a series of laboratory tests, the permeability of the transparent soil is obtained; the permeability is affected by the fluid dynamic viscosity, fluid density, particle size, particle size distribution, void ratio, and pore morphology. A hierarchical approach is introduced to quantitatively evaluate the effect of the particle shape on the permeability. Based on the experimental results, a modified Kozeny–Carman model is proposed for the prediction of transparent soil permeability, which can guide the preparation of transparent soil samples in further experimental studies.
Funder
Natural Science Foundation of Zhejiang Province
Fundamental Research Funds for the Central Universities
National Natural Science Foundation of China
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献