Author:
Adam Peter,Andreev Vladimir,Man’ko Margarita,Man’ko Vladimir,Mechler Matyas
Abstract
In view of the probabilistic quantizer–dequantizer operators introduced, the qubit states (spin-1/2 particle states, two-level atom states) realizing the irreducible representation of the S U ( 2 ) symmetry group are identified with probability distributions (including the conditional ones) of classical-like dichotomic random variables. The dichotomic random variables are spin-1/2 particle projections m = ± 1 / 2 onto three perpendicular directions in the space. The invertible maps of qubit density operators onto fair probability distributions are constructed. In the suggested probability representation of quantum states, the Schrödinger and von Neumann equations for the state vectors and density operators are presented in explicit forms of the linear classical-like kinetic equations for the probability distributions of random variables. The star-product and quantizer–dequantizer formalisms are used to study the qubit properties; such formalisms are discussed for photon tomographic probability distribution and its correspondence to the Heisenberg–Weyl symmetry properties.
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Reference56 articles.
1. Quantisierung als Eigenwertproblem
2. Quantisierung als Eigenwertproblem
3. The Principles of Quantum Mechanics;Dirac,1981
4. Das D�mpfungsproblem in der Wellenmechanik
5. Wahrscheinlichkeitstheoretischer Aufbau der Quantenmechanik;Von Neumann;Nachrichten von der Gesellschaft der Wissenschaften zu Gottingen Mathematisch-Physikalische Klasse,1927
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献