Application of the Generalized Hamiltonian Dynamics to Spherical Harmonic Oscillators

Author:

Oks Eugene

Abstract

Dirac’s Generalized Hamiltonian Dynamics (GHD) is a purely classical formalism for systems having constraints: it incorporates the constraints into the Hamiltonian. Dirac designed the GHD specifically for applications to quantum field theory. In one of our previous papers, we redesigned Dirac’s GHD for its applications to atomic and molecular physics by choosing integrals of the motion as the constraints. In that paper, after a general description of our formalism, we considered hydrogenic atoms as an example. We showed that this formalism leads to the existence of classical non-radiating (stationary) states and that there is an infinite number of such states—just as in the corresponding quantum solution. In the present paper, we extend the applications of the GHD to a charged Spherical Harmonic Oscillator (SHO). We demonstrate that, by using the higher-than-geometrical symmetry (i.e., the algebraic symmetry) of the SHO and the corresponding additional conserved quantities, it is possible to obtain the classical non-radiating (stationary) states of the SHO and that, generally speaking, there is an infinite number of such states of the SHO. Both the existence of the classical stationary states of the SHO and the infinite number of such states are consistent with the corresponding quantum results. We obtain these new results from first principles. Physically, the existence of the classical stationary states is the manifestation of a non-Einsteinian time dilation. Time dilates more and more as the energy of the system becomes closer and closer to the energy of the classical non-radiating state. We emphasize that the SHO and hydrogenic atoms are not the only microscopic systems that can be successfully treated by the GHD. All classical systems of N degrees of freedom have the algebraic symmetries ON+1 and SUN, and this does not depend on the functional form of the Hamiltonian. In particular, all classical spherically symmetric potentials have algebraic symmetries, namely O4 and SU3; they possess an additional vector integral of the motion, while the quantal counterpart-operator does not exist. This offers possibilities that are absent in quantum mechanics.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3