Smoke Object Segmentation and the Dynamic Growth Feature Model for Video-Based Smoke Detection Systems

Author:

Islam Md RashedulORCID,Amiruzzaman MdORCID,Nasim Shahriar,Shin JungpilORCID

Abstract

This article concerns smoke detection in the early stages of a fire. Using the computer-aided system, the efficient and early detection of smoke may stop a massive fire incident. Without considering the multiple moving objects on background and smoke particles analysis (i.e., pattern recognition), smoke detection models show suboptimal performance. To address this, this paper proposes a hybrid smoke segmentation and an efficient symmetrical simulation model of dynamic smoke to extract a smoke growth feature based on temporal frames from a video. In this model, smoke is segmented from the multi-moving object on the complex background using the Gaussian’s Mixture Model (GMM) and HSV (hue-saturation-value) color segmentation to encounter the candidate smoke and non-smoke regions in the preprocessing stage. The preprocessed temporal frames with moving smoke are analyzed by the dynamic smoke growth analysis and spatial-temporal frame energy feature extraction model. In dynamic smoke growth analysis, the temporal frames are segmented in blocks and the smoke growth representations are formulated from corresponding blocks. Finally, the classifier was trained using the extracted features to classify and detect smoke using a Radial Basis Function (RBF) non-linear Gaussian kernel-based binary Support Vector Machine (SVM). For validating the proposed smoke detection model, multi-conditional video clips are used. The experimental results suggest that the proposed model outperforms state-of-the-art algorithms.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3