Abstract
A biquaternionic version of the Dirac Equation is introduced, with a procedure for converting four-component spinors to elements of the Pauli algebra. In this version, mass appears as a coefficient between the 4-gradient of a spinor and its image under an outer automorphism of the Pauli algebra. The charge conjugation operator takes a particulary simple form in this formulation and switches the sign of the mass coefficient, so that for a solution invariant under charge conjugation the mass has to equal zero. The multiple of the charge conjugation operator by the imaginary unit turns out to be a complex Lorentz transformation. It commutes with the outer automorphism, while the charge conjugation operator itself anticommutes with it, providing a second more algebraic proof of the main theorem. Considering the Majorana equation, it is shown that non-zero mass of its solution is imaginary.
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献