Abstract
We argue that the usual Bloch sphere is insufficient in various aspects for the representation of qubits in quantum information theory. For example, spin flip operations with the quaternions I J K = e 2 π i 2 = − 1 and J I K = + 1 cannot be distinguished on the Bloch sphere. We show that a simple knot theoretic extension of the Bloch sphere representation is sufficient to track all unitary operations for single qubits. Next, we extend the Bloch sphere representation to entangled states using knot theory. As applications, we first discuss contextuality in quantum physics—in particular the Kochen-Specker theorem. Finally, we discuss some arguments against many-worlds theories within our knot theoretic model of entanglement. The key ingredients of our approach are symmetries and geometric properties of the unitary group.
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献