Development and Field Application of a Diffusive Gradients in Thin-Films Passive Sampler for Monitoring Three Polycyclic Aromatic Hydrocarbon Derivatives and One Polycyclic Aromatic Hydrocarbon in Waters

Author:

Ren Shiyu1,Li Liangshen1,Li Yucheng1,Wu Juan1,Dou Yueqin1

Affiliation:

1. School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China

Abstract

Polycyclic aromatic hydrocarbon (PAH) derivatives are widely present in the environment, and some are more hazardous than their parent PAHs. However, compared to PAHs, PAH derivatives are less studied due to challenges in monitoring as a result of their low concentrations in environmental matrixes. Here, we developed a new passive sampler based on diffusive gradients in thin films (DGT) to monitor PAH derivatives and PAHs in waters. In the laboratory study, the XAD18-DGT device exhibited high adsorption rates and was demonstrated to be suitable for deployment in environmental waters on the timescale of months. The diffusion coefficients, D, were 5.30 × 10−6 cm2 s−1, 4.51 × 10−6 cm2 s−1, 4.03 × 10−6 cm2 s−1 and 3.34 × 10−6 cm2 s−1 for 9-fluorenone (9-FL), 1-chloroanthraquinone (1-CLAQ), 9-nitroanthracene (9-NA) and phenanthrene (Phe), respectively, at 25 °C. The DGT device’s performance was independent of pH, ionic strength, deployment time and storage time, indicating it can be widely used in natural waters. In the field study, the target pollutant concentrations measured by the DGT are in good accordance with those determined via grab sampling. Then, the DGT devices were utilized to quantify PAH derivatives and PAHs in several rivers in Hefei, China. This work demonstrates the feasibility of using the DGT technique to detect trace PAH derivatives and PAHs in waters.

Funder

agriculture non-point source pollution control project of Feidong county, China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3