An Inversion Study of Reservoir Colluvial Landslide Permeability Coefficient by Combining Physical Model and Data-Driven Models

Author:

Yue Xiaopeng123,Wang Yankun124ORCID,Wen Tao12

Affiliation:

1. School of Geosciences, Yangtze University, Wuhan 430100, China

2. Jiacha County Branch of Hubei Yangtze University Technology Development Co., Ltd., Shannan 856499, China

3. Zhongguan Chenhua Petroleum Engineering Co., Ltd., Wuhan 430073, China

4. Engineering Research Center of Rock-Soil Drilling & Excavation and Protection, Ministry of Education, Wuhan 430074, China

Abstract

The saturated permeability coefficient (ks) is a key parameter for evaluating the seepage and stability of reservoir colluvial landslides. However, ks values obtained from traditional experimental methods are often characterized by large variations and low representativeness. As a result, there are significant deviations from actual observations when used in seepage field calculations for reservoir landslide analysis. This study proposes an intelligent inversion method that combines a physical model and a data-driven model for reservoir landslide ks based on actual groundwater level (GWL) monitoring data. This method combines Latin Hypercube Sampling (LHS), unsaturated flow finite element (FE) analysis, particle swarm optimization algorithm (PSO), and kernel extreme learning machine model (KELM). Taking the Hongyanzi landslide in Sichuan Province, China, as the research object, the GWL of the landslide under different ks was first obtained by LHS and transient seepage FE analysis. Then, a nonlinear functional relationship between ks and the landslide GWL was fitted based on the PSO-KELM model. Finally, the optimal landslide ks was obtained by minimizing the root-mean-squared error between the predicted and actual GWL using the PSO. A global sensitivity analysis was also conducted on the ks of different rock and soil layers to reveal their control rules on the calculation of landslide GWL. The research results demonstrate the feasibility of the proposed method and provide valuable information for similar landslides in practice.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hubei Province

Science and Technology program of Tibet Autonomous Region

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3