Soil Moisture Data Assimilation in MISDc for Improved Hydrological Simulation in Upper Huai River Basin, China

Author:

Ding Zhenzhou,Lü Haishen,Ahmed NaveedORCID,Zhu Yonghua,Gou Qiqi,Wang Xiaoyi,Liu En,Xu Haiting,Pan Ying,Sun Mingyue

Abstract

In recent years, flash floods have become increasingly serious. Improving the runoff simulation and forecasting ability of hydrological models is urgent. Therefore, data assimilation (DA) methods have become an important tool. Many studies have shown that the assimilation of remotely sensed soil moisture (SM) data could help improve the simulation and forecasting capability of hydrological models. Still, very few studies have attempted to assimilate SM data from land surface process models into hydrological models to improve model simulation and forecasting accuracy. Therefore, in this study, we used the ensemble Kalman filter (EnKF) to assimilate the China Land Data Assimilation System (CLDAS) SM product into the MISDc model. We also corrected the CLDAS SM and assimilated the corrected SM data into the hydrological model. In addition, the effects of the 5th and 95th percentiles of flow were evaluated to see how SM DA affected low and high flows, respectively. Additionally, we tried to find an appropriate size for the number of ensemble members of the EnKF for this study. The results showed that the EnKF SM DA improved the runoff simulation ability of the hydrological model, especially for the high flows of the model; however, the simulation for the low flows deteriorated. In general, SM DA positively affected the ability of the MISDc model runoff simulation.

Funder

National Key Research and Development Program

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3