Ethyl Cellulose-Core, OSA Starch-Shell Electrosprayed Microcapsules Enhance the Oxidative Stability of Loaded Fish Oil

Author:

Fallahasghari Elnaz Z.1,Stubbe Peter Reimer1ORCID,Chronakis Ioannis S.1ORCID,Mendes Ana C.1ORCID

Affiliation:

1. DTU—Food, Research Group for Food Production Engineering, Laboratory of Nano-BioScience, Technical University of Denmark, Henrik Dams Allé, B202, 2800 Kongens Lyngby, Denmark

Abstract

The encapsulation and the oxidative stability of cod liver fish oil (CLO) within coaxial electrosprayed (ethyl cellulose/CLO) core–(octenyl succinic anhydride, OSA-modified starch) shell, and monoaxial electrosprayed ethyl cellulose/CLO microcapsules were investigated. Core–shell (H-ECLO) and monoaxial (ECLO) electrosprayed microcapsules with an average diameter of 2.8 ± 1.8 µm, and 2.2 ± 1.4 µm, respectively, were produced. Confocal microscopy confirmed not only the core–shell structure of the H-ECLO microcapsules, but also the location of the CLO in the core. However, for the ECLO microcapsules, the CLO was distributed on the microcapsules’ surface, as also confirmed by Raman spectroscopy. Atomic force microscopy showed that the average surface adhesion of the H-ECLO microcapsules was significantly lower (5.41 ± 0.31 nN) than ECLO microcapsules (18.18 ± 1.07 nN), while the H-ECLO microcapsules showed a remarkably higher Young’s modulus (33.84 ± 4.36 MPa) than the ECLO microcapsules (6.64 ± 0.84 MPa). Differential scanning calorimetry results confirmed that the H-ECLO microcapsules enhanced the oxidative stability of encapsulated CLO by about 15 times, in comparison to non-encapsulated oil, mainly by preventing the presence of the fish oil at the surface of the microcapsules, while ECLO microcapsules enhanced the oxidative stability of CLO about 2.9 times due to the hydrophobic interactions of the oil and ethyl cellulose. Furthermore, the finite element method was also used to evaluate the electric field strength distribution, which was substantially higher in the vicinity of the collector and lower in the proximity of the nozzle when the coaxial electrospray process was employed in comparison to the monoaxial process.

Funder

BASF A/S

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3