Investigating the Influence of Diverse Functionalized Carbon Nanotubes as Conductive Fibers on Paper-Based Sulfur Cathodes in Lithium–Sulfur Batteries

Author:

Ren Xuan1,Wu Haiwei1ORCID,Xiao Ya1ORCID,Wu Haoteng1,Wang Huan1,Li Haiwen1,Guo Yuchen1,Xu Peng1,Yang Baohong1,Xiong Chuanyin1

Affiliation:

1. Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China

Abstract

Lithium–sulfur (Li–S) batteries are expected to be one of the next generations of high-energy-density battery systems due to their high theoretical energy density of 2600 Wh kg−1. Embracing the trends toward flexibility, lightweight design, and cost-effectiveness, paper-based electrodes offer a promising alternative to traditional coated cathodes in Li–S batteries. Within paper-based electrodes, conductive fibers such as carbon nanotubes (CNTs) play a crucial role. They help to form a three-dimensional network within the paper matrix to ensure structural integrity over extended cycling while mitigating the shuttle effect by confining sulfur within the cathode. Herein, we explore how variously functionalized CNTs, serving as conductive fibers, impact the physical and electrochemical characteristics of paper-based sulfur cathodes in Li–S batteries. Specifically, graphitized hydroxylated carbon nanotubes (G-CNTs) exhibit remarkable capacity at low currents owing to their excellent conductivity and interaction with lithium polysulfide (LiPS), achieving the highest initial specific capacity of 1033 mAh g−1 at 0.25 C (1.1 mA cm−2). Aminated multi-walled carbon nanotubes (NH2-CNTs) demonstrate an enhanced affinity for LiPS due to the -NH2 groups. However, the uneven distribution of these fibers may induce electrode surface passivation during charge–discharge cycles. Notably, hydroxylated multi-walled carbon nanotubes (OH-CNTs) can establish a uniform and stable 3D network with plant fibers, showcasing superior mechanical properties and helping to mitigate Li2S agglomeration while preserving the electrode porosity. The paper-based electrode integrated with OH-CNTs even retains a specific capacity of approximately 800 mAh g−1 at about 1.25 C (5 mA cm−2), demonstrating good sulfur utilization and rate capacity compared to other CNT variants.

Funder

advanced research fund of Shaanxi University of Science and Technology

Natural Science Basic Research Plan in Shaanxi Province, China

State Key Laboratory of Pulp and Paper Engineering

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3