Abstract
Fast-response humidity sensors using nanomaterials are attractive and have been intensively studied. Among the various nanomaterials, nonporous inorganic nanoparticles are suitable for use in humidity sensitive films for sensors. Here, we focus on a nonporous inorganic nanoparticle film and investigate a humidity sensor using the film. Hysteresis error and a dynamic response to a change of humidity are fundamental specifications of humidity sensors. A humidity sensor using a 50 nm silica nanoparticle film shows a hysteresis error of 2% at 85% RH and a response/recovery time of 2.8/2.3 s in 30% RH to 70% RH. We also summarize response/recovery times and hysteresis errors of state-of-the-art humidity sensors. As compared to those of commercial sensors and porous nanoparticle-based sensors evaluated using saturated salt solutions, the fabricated sensor shows a comparative hysteresis error and shorter response time.
Funder
Japan Society for the Promotion of Science
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献