Abstract
A high-spatial resolution aerosol optical depth (AOD) dataset is critically important for regional meteorology and climate studies. Chinese Huanjing-1 (HJ-1) A/B charge-coupled diode (CCD) data are a suitable data source for retrieving AODs. However, AOD cannot be retrieved based on the dark target method due to the absence of a shortwave infrared band. In this study, an AOD estimation method based on the relationships between visible bands of HJ-1 A/B CCDs is proposed. The Polarization and Directionality of the Earth's Reflectances (POLDER) Bidirectional Reflectance Distribution Function (BRDF) dataset was used to construct a lookup table for interband regression coefficients that varied by solar/view angle and land cover type. Finally, high-spatial resolution AODs could be retrieved with the aerosol lookup table and constraints. The results showed that the AODs retrieved from the HJ-1 A/B CCD data had the same range of distribution and trends as a visual interpretation of the images and Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol products did. The validation results using four sites of the Aerosol Robotic Network (AERONET) in Beijing showed that the value of the correlation coefficient R was 0.866, the root mean square error (RMSE) was 0.167, the mean absolute error (MAE) was 0.131, and the expected error (EE) was 53.9%. If the measurements of an AERONET site were used as prior knowledge, AOD retrieval results could be much more accurately obtained by this method (R is 0.989, RMSE is 0.052, MAE is 0.042, and EE is 96.7%).
Funder
National Key Research and Development Project
National Natural Science Foundation of China
Subject
General Earth and Planetary Sciences
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献