An Automated Rectification Method for Unmanned Aerial Vehicle LiDAR Point Cloud Data Based on Laser Intensity

Author:

Zhang XianfengORCID,Gao Renqiang,Sun Quan,Cheng Junyi

Abstract

Point cloud rectification is an efficient approach to improve the quality of laser point cloud data. Conventional rectification methods mostly relied on ground control points (GCPs), typical artificial ground objects, and raw measurements of the laser scanner which impede automation and adaptability in practice. This paper proposed an automated rectification method for the point cloud data that are acquired by an unmanned aerial vehicle LiDAR system based on laser intensity, with the goal to reduce the dependency of ancillary data and improve the automated level of the rectification process. First, laser intensity images were produced by interpolating the intensity data of all the LiDAR scanning strips. Second, a scale-invariant feature transform algorithm was conducted to extract two dimensional (2D) tie points from the intensity images; the pseudo tie points were removed by using a random sample consensus algorithm. Next, all the 2D tie points were transformed to three dimensional (3D) point cloud to derive 3D tie point sets. After that, the observation error equations were created with the condition of coplanar constraints. Finally, a nonlinear least square algorithm was applied to solve the boresight angular error parameters, which were subsequently used to correct the laser point cloud data. A case study in Shehezi, Xinjiang, China was implemented with our proposed method and the results indicate that our method is efficient to estimate the boresight angular error between the laser scanner and inertial measurement unit. After applying the results of the boresight angular error solution to rectify the laser point cloud, the planar root mean square error (RMSE) is 5.7 cm and decreased by 1.1 cm in average; the elevation RMSE is 1.4 cm and decreased by 0.8 cm in average. Comparing with the stepwise geometric method, our proposed method achieved similar horizontal accuracy and outperformed it in vertical accuracy of registration.

Funder

National Natural Science Foundation of China

Xinjiang Production and Construction Corps

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3