An Efficient Framework for Mobile Lidar Trajectory Reconstruction and Mo-norvana Segmentation

Author:

Che Erzhuo,Olsen MichaelORCID

Abstract

Mobile laser scanning (MLS, or mobile lidar) is a 3-D data acquisition technique that has been widely used in a variety of applications in recent years due to its high accuracy and efficiency. However, given the large data volume and complexity of the point clouds, processing MLS data can be still challenging with respect to effectiveness, efficiency, and versatility. This paper proposes an efficient MLS data processing framework for general purposes consisting of three main steps: trajectory reconstruction, scan pattern grid generation, and Mo-norvana (Mobile Normal Variation Analysis) segmentation. We present a novel approach to reconstructing the scanner trajectory, which can then be used to structure the point cloud data into a scan pattern grid. By exploiting the scan pattern grid, point cloud segmentation can be performed using Mo-norvana, which is developed based on our previous work for processing Terrestrial Laser Scanning (TLS) data, normal variation analysis (Norvana). In this work, with an unorganized MLS point cloud as input, the proposed framework can complete various tasks that may be desired in many applications including trajectory reconstruction, data structuring, data visualization, edge detection, feature extraction, normal estimation, and segmentation. The performance of the proposed procedures are experimentally evaluated both qualitatively and quantitatively using multiple MLS datasets via the results of trajectory reconstruction, visualization, and segmentation. The efficiency of the proposed method is demonstrated to be able to handle a large dataset stably with a fast computation speed (about 1 million pts/sec. with 8 threads) by taking advantage of parallel programming.

Funder

National Science Foundation

Oregon Department of Transportation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3