Abstract
In this paper, an optimized contrast enhancement method combining global and local enhancement results is proposed to improve the visual quality of infrared images. Global and local contrast enhancement methods have their merits and demerits, respectively. The proposed method utilizes the complementary characteristics of these two methods to achieve noticeable contrast enhancement without artifacts. In our proposed method, the 2D histogram, which contains both global and local gray level distribution characteristics of the original image, is computed first. Then, based on the 2D histogram, the global and local enhanced results are obtained by applying histogram specification globally and locally. Lastly, the enhanced result is computed by solving an optimization equation subjected to global and local constraints. The pixel-wise regularization parameters for the optimization equation are adaptively determined based on the edge information of the original image. Thus, the proposed method is able to enhance the local contrast while preserving the naturalness of the original image. Qualitative and quantitative evaluation results demonstrate that the proposed method outperforms the block-based methods for improving the visual quality of infrared images.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Subject
General Earth and Planetary Sciences
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献