Temporal Up-Sampling of Planar Long-Range Doppler LiDAR Wind Speed Measurements Using Space-Time Conversion

Author:

Beck Hauke,Kühn MartinORCID

Abstract

Measurement campaigns in wind energy research are becoming increasingly complex, which has exacerbated the difficulty of taking optimal measurements using light detection and ranging (LiDAR) systems. Compromises between spatial and temporal resolutions are always necessary in the study of heterogeneous flows, like wind turbine wakes. Below, we develop a method for space-time conversion that acts as a temporal fluid-dynamic interpolation without incurring the immense computing costs of a 4D flow solver. We tested this space-time conversion with synthetic LiDAR data extracted from a large-eddy-simulation (LES) of a neutrally stable single-turbine wake field. The data was synthesised with a numerical LiDAR simulator. Then, we performed a parametric study of 11 different scanning velocities. We found that temporal error dominates the mapping error at low scanning speeds and that spatial error becomes dominant at fast scanning speeds. Our space-time conversion method increases the temporal resolution of the LiDAR data by a factor 2.4 to 40 to correct the scan-containing temporal shift and to synchronise the scan with the time code of the LES data. The mean-value error of the test case is reduced to a minimum relative error of 0.13% and the standard-deviation error is reduced to a minimum of 0.6% when the optimal scanning velocity is used. When working with the original unprocessed LiDAR measurements, the space-time-conversion yielded a maximal error reduction of 69% in the mean value and 58% in the standard deviation with the parameters identified with our analysis.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3