Abstract
The growing population in China has led to an increasing importance of crop area (CA) protection. A powerful tool for acquiring accurate and up-to-date CA maps is automatic mapping using information extracted from high spatial resolution remote sensing (RS) images. RS image information extraction includes feature classification, which is a long-standing research issue in the RS community. Emerging deep learning techniques, such as the deep semantic segmentation network technique, are effective methods to automatically discover relevant contextual features and get better image classification results. In this study, we exploited deep semantic segmentation networks to classify and extract CA from high-resolution RS images. WorldView-2 (WV-2) images with only Red-Green-Blue (RGB) bands were used to confirm the effectiveness of the proposed semantic classification framework for information extraction and the CA mapping task. Specifically, we used the deep learning framework TensorFlow to construct a platform for sampling, training, testing, and classifying to extract and map CA on the basis of DeepLabv3+. By leveraging per-pixel and random sample point accuracy evaluation methods, we conclude that the proposed approach can efficiently obtain acceptable accuracy (Overall Accuracy = 95%, Kappa = 0.90) of CA classification in the study area, and the approach performs better than other deep semantic segmentation networks (U-Net/PspNet/SegNet/DeepLabv2) and traditional machine learning methods, such as Maximum Likelihood (ML), Support Vector Machine (SVM), and RF (Random Forest). Furthermore, the proposed approach is highly scalable for the variety of crop types in a crop area. Overall, the proposed approach can train a precise and effective model that is capable of adequately describing the small, irregular fields of smallholder agriculture and handling the great level of details in RGB high spatial resolution images.
Subject
General Earth and Planetary Sciences
Cited by
83 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献