Affiliation:
1. School of Information Science and Engineering, Shandong University, Qingdao 266237, China
Abstract
The synthesis of 2D MoWS2 nanosheets involved the liquid-phase exfoliation technique was explored in this paper. The nonlinear optical response of MoWS2 was characterized in the 1 µm wavelength range, and its suitability as a saturable absorber (SA) was confirmed. Experimental demonstrations were conducted by using MoWS2 as an SA in an idler-resonant intracavity KTA optical parametric oscillator (OPO) driven by a dual-loss-modulated Q-switched and mode-locked (QML) YVO4/Nd:YVO4 laser with an acousto-optic modulator (AOM). By appropriately tuning the pump power and the AOM repetition rate, the Q-switched envelope pulse widths for the signal and idler waves could be significantly reduced to be shorter than the cavity round-trip transit time, i.e., the interval between two neighboring mode-locking pulses. Consequently, this enabled the generation of sub-nanosecond single mode-locking pulses with a low repetition rate, high pulse energy, and remarkable stability. With a repetition rate of 1 kHz and maximal pulse energies of 318 µJ and 169 µJ, respectively, sub-nanosecond single mode-locking pulses of the signal and idler waves were generated. The theoretical model was established using coupled rate equations with a Gaussian spatial distribution approximation. The numerical simulation results for generating sub-nanosecond single mode-locking pulses for the signal and idler waves within their respective Q-switched envelopes aligned fundamentally with the experimental results, proving that MoWS2 can be a potential nanomaterial for further optoelectronic applications.
Funder
National Natural Science Foundation of China