Introducing Molecular Sieve into Activated Carbon to Achieve High-Effective Adsorption for Ethylene Oxide

Author:

Liu Feng12,Qin Lingyan23,Ye Pingwei2,Yang Bo2,Wu Qiong2,Li Li2,Dai Yuwei1,Zhou Chuan2ORCID,Li Sumin1

Affiliation:

1. School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, China

2. State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China

3. College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China

Abstract

Presently, ethylene oxide (EtO) is posing a significant threat to both human health and the environment due to occasional or deliberate emissions. However, few works so far have focused on this issue. It is urgent to explore novel and effective technology to protect against the threat of EtO. Herein, a series of AC/ZSM-5 composites were prepared to improve the adsorption performance for EtO, evaluated by dynamic breakthrough experiments. Particularly, the AC/ZSM-20% composite demonstrated a more excellent adsorption capacity of 81.9 mg/g at 25 °C and 50% RH than that of pristine AC and ZSM-5 with 32.5 and 52.3 mg/g, respectively. Moreover, the adsorption capacity of the AC/ZSM-20% composite remained constant even after five adsorption-desorption cycles. The adsorption mechanism of EtO on the composite is further revealed by density functional theory (DFT) calculations.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3