Construction of Patterned Cu2O Photonic Crystals on Textile Substrates for Environmental Dyeing with Excellent Antibacterial Properties

Author:

Yin Zhen1,Zhou Chunxing1,Shao Yiqin1,Sun Zhan1,Zhu Guocheng12ORCID,Khabibulla Parpiev3

Affiliation:

1. College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China

2. Zhejiang-Czech Joint Laboratory of Advanced Fiber Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China

3. Department of Technology of Textile Industry Products, Namangan Institute of Engineering and Technology, 7, Kasansay Street, Namangan 160115, Uzbekistan

Abstract

Structural dyeing has attracted much attention due to its advantages such as environmental friendliness, vivid color, and resistance to fading. Herein, we propose an alternative strategy for fabric coloring based on Cu2O microspheres. The strong Mie scattering effect of Cu2O microspheres enables the creation of vibrant structural colors on fabric surfaces. These colors are visually striking and can potentially be adjusted by tuning the diameter of the microspheres. Importantly, the Cu2O spheres were firmly bonded to the fabrics by using the industrial adhesive PDMS, and the Cu2O structural color fabrics exhibited excellent color fastness to washing, rubbing, and bending. Cu2O structural color fabrics also demonstrated excellent antimicrobial properties against bacteria such as Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The bactericidal rates of Cu2O structural color textiles after washing for E. coli and S. aureus reached 92.40% and 94.53%, respectively. This innovative approach not only addresses environmental concerns associated with traditional dyeing processes but also enhances fabric properties by introducing vibrant structural colors and antimicrobial functionality.

Funder

Key Program for International S&T Innovation Cooperation Projects of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3