Balanced-DRL: A DQN-Based Job Allocation Algorithm in BaaS

Author:

Guo Chaopeng1ORCID,Xu Ming1,Hu Shengqiang1,Song Jie1ORCID

Affiliation:

1. Software College, Northeastern University, Shenyang 110169, China

Abstract

Blockchain as a Service (BaaS) combines features of cloud computing and blockchain, making blockchain applications more convenient and promising. Although current BaaS platforms have been widely adopted by both industry and academia, concerns arise regarding their performance, especially in job allocation. Existing BaaS job allocation strategies are simple and do not guarantee load balancing due to the dynamic nature and complexity of BaaS job execution. In this paper, we propose a deep reinforcement learning-based algorithm, Balanced-DRL, to learn an optimized allocation strategy in BaaS based on analyzing the execution process of BaaS jobs and a set of job scale characteristics. Following extensive experiments with generated job request workloads, the results show that Balanced-DRL significantly improves BaaS performance, achieving a 5% to 8% increase in job throughput and a 5% to 20% decrease in job latency.

Funder

Fundamental Research Funds for the Central University

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3