Affiliation:
1. School of Qianhu, Nanchang University, Nanchang 330031, China
2. School of Information Engineering, Nanchang University, Nanchang 330031, China
Abstract
Precise and dependable wind speed forecasting (WSF) enables operators of wind turbines to make informed decisions and maximize the use of available wind energy. This study proposes a hybrid WSF model based on outlier correction, heuristic algorithms, signal decomposition methods, and DLinear. Specifically, the hybrid model (HI-IVMD-DLinear) comprises the Hampel identifier (HI), the improved variational mode decomposition (IVMD) optimized by grey wolf optimization (GWO), and DLinear. Firstly, outliers in the wind speed sequence are detected and replaced with the HI to mitigate their impact on prediction accuracy. Next, the HI-processed sequence is decomposed into multiple sub-sequences with the IVMD to mitigate the non-stationarity and fluctuations. Finally, each sub-sequence is predicted by the novel DLinear algorithm individually. The predictions are reconstructed to obtain the final wind speed forecast. The HI-IVMD-DLinear is utilized to predict the real historical wind speed sequences from three regions so as to assess its performance. The experimental results reveal the following findings: (a) HI could enhance prediction accuracy and mitigate the adverse effects of outliers; (b) IVMD demonstrates superior decomposition performance; (c) DLinear has great prediction performance and is suited to WSF; and (d) overall, the HI-IVMD-DLinear exhibits superior precision and stability in one-to-four-step-ahead forecasting, highlighting its vast potential for application.
Funder
National Natural Science Foundation of China
the Science & Technology Planning Project of Shanghai
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献