Groups with Subnormal Deviation

Author:

de Giovanni Francesco1,Kurdachenko Leonid A.2,Russo Alessio3

Affiliation:

1. Dipartimento di Matematica e Applicazioni, Università di Napoli Federico II, Via Cintia, 80138 Napoli, Italy

2. Department of Algebra, National University of Dnipro, 49000 Dnipro, Ukraine

3. Dipartimento di Matematica e Fisica, Università della Campania Luigi Vanvitelli, Via Vivaldi, 81100 Caserta, Italy

Abstract

The structure of groups which are rich in subnormal subgroups has been investigated by several authors. Here, we prove that if a periodic soluble group G has subnormal deviation, which means that the set of its non-subnormal subgroups satisfies a very weak chain condition, then either G is a Černikov group or all its subgroups are subnormal. It follows that if a periodic soluble group has a subnormal deviation, then its subnormal deviation is 0.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference13 articles.

1. A group with trivial centre satisfying the normalizer condition;Heineken;J. Algebra,1968

2. Auflörsbarkeit von Gruppen, deren Untergruppen alle subnormal sind;Arch. Math.,1990

3. Torsion-free groups with all subgroups subnormal;Smith;Arch. Math.,2001

4. Franciosi, S., and de Giovanni, F. (1996). Infinite Groups 1994, De Gruyter.

5. Groups with the maximal condition on nonsubnormal subgroups;Kurdachenko;Boll. Un. Mat. Ital.,1996

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A real chain condition for groups;Journal of Algebra;2024-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3