An Efficient Evolution-Based Technique for Moving Target Search with Unmanned Aircraft Vehicle: Analysis and Validation

Author:

Abdel-Basset Mohamed1,Mohamed Reda1,Hezam Ibrahim M.2ORCID,Alshamrani Ahmad M.2ORCID,Sallam Karam M.3ORCID

Affiliation:

1. Faculty of Computers and Informatics, Zagazig University, Zagazig 44519, Egypt

2. Department of Statistics & Operations Research, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia

3. Faculty of Science and Technology, School of IT and Systems, University of Canberra, Canberra, ACT 2601, Australia

Abstract

Recent advances in technology have led to a surge in interest in unmanned aerial vehicles (UAVs), which are remote-controlled aircraft that rely on cameras or sensors to gather information about their surroundings during flight. A UAV requires a path-planning technique that can swiftly recalculate a viable and quasi-optimal path in flight if a new obstacle or hazard is recognized or if the target is moved during the mission. In brief, the planning of UAV routes might optimize a specific problem determined by the application, such as the moving target problem (MTP), flight time and threats, or multiobjective navigation. The complexity of MTP ranges from NP-hard to NEXP-complete because there are so many probabilistic variables involved. Therefore, it is hard to detect a high-quality solution for this problem using traditional techniques such as differential calculus. Therefore, this paper hybridizes differential evolution (DE) with two newly proposed updating schemes to present a new evolution-based technique named hybrid differential evolution (HDE) for accurately tackling the MTP in a reasonable amount of time. Using Bayesian theory, the MTP can be transformed into an optimization problem by employing the target detection probability as the fitness function. The proposed HDE encodes the search trajectory as a sequence of UAV motion pathways that evolve with increasing the current iteration for finding the near-optimal solution, which could maximize this fitness function. The HDE is extensively compared to the classical DE and several rival optimizers in terms of several performance metrics across four different scenarios with varying degrees of difficulty. This comparison demonstrates the proposal’s superiority in terms of the majority of used performance metrics.

Funder

Deputyship for Research and Innovation, Ministry of Education in Saudi Arabia

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3