A Frequency Attention-Based Dual-Stream Network for Image Inpainting Forensics

Author:

Wang Hongquan1,Zhu Xinshan1ORCID,Ren Chao1,Zhang Lan1,Ma Shugen1

Affiliation:

1. School of Electrical and Information Engineering, Tianjin University, Tianjing 300072, China

Abstract

The rapid development of digital image inpainting technology is causing serious hidden danger to the security of multimedia information. In this paper, a deep network called frequency attention-based dual-stream network (FADS-Net) is proposed for locating the inpainting region. FADS-Net is established by a dual-stream encoder and an attention-based blue-associative decoder. The dual-stream encoder includes two feature extraction streams, the raw input stream (RIS) and the frequency recalibration stream (FRS). RIS directly captures feature maps from the raw input, while FRS performs feature extraction after recalibrating the input via learning in the frequency domain. In addition, a module based on dense connection is designed to ensure efficient extraction and full fusion of dual-stream features. The attention-based associative decoder consists of a main decoder and two branch decoders. The main decoder performs up-sampling and fine-tuning of fused features by using attention mechanisms and skip connections, and ultimately generates the predicted mask for the inpainted image. Then, two branch decoders are utilized to further supervise the training of two feature streams, ensuring that they both work effectively. A joint loss function is designed to supervise the training of the entire network and two feature extraction streams for ensuring optimal forensic performance. Extensive experimental results demonstrate that the proposed FADS-Net achieves superior localization accuracy and robustness on multiple datasets compared to the state-of-the-art inpainting forensics methods.

Funder

National Natural Science Foundation of China

Opening Project of State Key Laboratory of Digital Publishing Technology

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3