Swarm Robots Search for Multiple Targets Based on Historical Optimal Weighting Grey Wolf Optimization

Author:

Zhu Qian1,Li Yongqing1,Zhang Zhen1

Affiliation:

1. Software College, Northeastern University, Shenyang 110169, China

Abstract

This study investigates the problem of swarm robots searching for multiple targets in an unknown environment. We propose the Historical Optimal Weighting Grey Wolf Optimization (HOWGWO) algorithm based on an improved grouping strategy. In the HOWGWO algorithm, we gather and update every individual grey wolf’s historical optimal position and rank grey wolves based on the merit of their historical optimal position. The position of the prey is dynamically estimated by the leader wolf, and all grey wolves move towards the prey’s estimated position. To solve the multi-target problem of swarm robots search, we integrate the HOWGWO algorithm with an improved grouping strategy and divide the algorithm into two stages: the random walk stage and the dynamic grouping stage. During the random walk stage, grey wolves move randomly and update their historical optimal positions. During the dynamic grouping stage, the HOWGWO algorithm generates search auxiliary points (SAPs) by adopting an improved grouping strategy based on individual grey wolves’ historical optimal positions. These SAPs are then utilized for grouping grey wolves to search for different prey. The SAPs are re-generated using the optimum historical positions of every single grey wolf after positions have been updated, rather than just those belonging to a specific group. The effectiveness of the proposed HOWGWO algorithm is extensively assessed in 30 dimensions using the CEC 2017 test suite, which simulates unimodal, multimodal, hybrid, and composition problems. Then, the obtained results are compared with competitors, including GWO, PSO and EGWO, and the results are statistically analyzed through Friedman’s test. Ultimately, simulations are performed to simulate the problem of searching multiple targets by swarm robots in a real environment. The experimental results and statistical analysis confirm that the proposed HOWGWO algorithm has a fast convergence speed and solution quality for solving global optimization problems and swarm robots searching multiple targets problems.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference31 articles.

1. Advance into ocean: From bionic monomer to swarm intelligence;Chen;Acta Electron. Sin.,2021

2. A solution to the single-question crowd wisdom problem;Prelec;Nature,2017

3. Emergent sensing of complex environments by mobile animal groups;Berdahl;Science,2013

4. From evolutionary computation to the evolution of things;Eiben;Nature,2015

5. Deng, L.X. (2016). Study on multiple mobile robots coordinated planning algorithms. [Ph.D. Thesis, Shandong University].

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3