On Nearly Sasakian and Nearly Kähler Statistical Manifolds

Author:

Uddin Siraj1,Peyghan Esmaeil2,Nourmohammadifar Leila2,Bossly Rawan13

Affiliation:

1. Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia

2. Department of Mathematics, Faculty of Science, Arak University, Arak 38156-8-8349, Iran

3. Department of Mathematics, College of Science, Jazan University, Jazan 82817, Saudi Arabia

Abstract

In this paper, we introduce the notions of nearly Sasakian and nearly Kähler statistical structures with a non-trivial example. The conditions for a real hypersurface in a nearly Kähler statistical manifold to admit a nearly Sasakian statistical structure are given. We also study invariant and anti-invariant statistical submanifolds of nearly Sasakian statistical manifolds. Finally, some conditions under which such a submanifold of a nearly Sasakian statistical manifold is itself a nearly Sasakian statistical manifold are given.

Funder

King Abdulaziz University

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference10 articles.

1. Sun, K., and Marchand-Maillet, S. (2014, January 21–26). An information geometry of statistical manifold learning. Proceedings of the 31st International Conference on Machine Learning (ICML-14), Beijing, China.

2. Information geometry of the EM and em algorithms for neural networks;Amari;Neural Netw.,1995

3. Manifold regularization: A geometric framework for learning from labeled and unlabeled examples;Belkin;J. Mach. Learn. Res.,2006

4. Caticha, A. (2015). Geometry from information geometry. arXiv.

5. On the mathematical foundations of theoretical statistics;Fisher;Philos. Trans. R. Soc. Lond.,1922

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3