Mylar Balloon and Associated Geometro-Mechanical Moments

Author:

Kovalchuk Vasyl1ORCID,Pulov Vladimir I.2ORCID,Mladenov Ivaïlo M.34ORCID

Affiliation:

1. Institute of Fundamental Technological Research, Polish Academy of Sciences, 5B, Pawińskiego Str., 02-106 Warsaw, Poland

2. Department of Mathematics and Physics, Technical University of Varna, Studentska Str. 1, 9010 Varna, Bulgaria

3. Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Tsarigradsko Chaussee 72, 1784 Sofia, Bulgaria

4. Institute of Mechanics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 4, 1113 Sofia, Bulgaria

Abstract

Starting with identifications of the very fundamental geometric characteristics of a Mylar balloon such as the profile curve, height, volume, arclength, surface area, crimping factor, etc., using the geometrical moments In(x) and In, we present explicit formulas for them and those of the mechanical moments of both solid and hollow balloons of arbitrary order. This is achieved by relying on the recursive relationships among elliptic integrals and the final results are expressed via the fundamental mathematical constants such as π, lemniscate constant ω˜, and Gauss’s constant G. An interesting periodicity modulo 4 was detected and accounted for in the final formulas for the moments. The principal results are illustrated by two tables, a few graphics, and some direct relationships with other fundamental areas in mathematics, physics and geometry are pointed out.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference15 articles.

1. What is the shape of a Mylar balloon?;Paulsen;Am. Math. Mon.,1994

2. Smalley, J. (1970). Development of the E-Balloon, Technical Report AFCRL-70-0543; National Center for Atmospheric Research.

3. Tang, J., Pu, S., Yu, P., Xie, W., Li, Y., and Hu, B. (2022). Research on trajectory prediction of a high-altitude zero-pressure balloon system to assist rapid recovery. Aerospace, 9.

4. The shallowest possible pneumatic forms;Kawaguchi;Bull. Int. Assoc. Shell Struct.,1977

5. The Mylar balloon revisited;Mladenov;Am. Math. Mon.,2003

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3