Affiliation:
1. Department of Computer Science, Utah State University, Logan, UT 84322, USA
Abstract
When realized on computational devices with finite quantities of memory, feedforward artificial neural networks and the functions they compute cease being abstract mathematical objects and turn into executable programs generating concrete computations. To differentiate between feedforward artificial neural networks and their functions as abstract mathematical objects and the realizations of these networks and functions on finite memory devices, we introduce the categories of general and actual computabilities and show that there exist correspondences, i.e., bijections, between functions computable by trained feedforward artificial neural networks on finite memory automata and classes of primitive recursive functions.
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献