Estimating the Critical Velocity of the Incipient Motion of Particles on the Cuttings Bed Surface: An Experimental and Theoretical Analysis

Author:

Shen Kaixiang12,Xu Zhenqiang12,Ju Guoshuai3,Wang Yingsheng12,Li Zijian4

Affiliation:

1. Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou 510075, China

2. National Engineering Research Center of Gas Hydrate Exploration and Development, Guangzhou 510075, China

3. College of Petroleum Engineering, Northeast Petroleum University, Daqing 163318, China

4. Department of Engineering and Applied Science, Memorial University of Newfoundland, St. John’s, NF A1B 3X5, Canada

Abstract

During the drilling of highly deviated and horizontal wells, a pump shutdown causes drill cuttings to settle and form a cuttings bed in the annulus. This study investigated the incipient motion law of the particles on the cuttings bed surface when the drilling fluid starts circulating again. This work could help field engineers to determine a reasonable incipient pump displacement to improve hole-cleaning efficiency. In this study, the effects of the well inclination angle, cuttings size, and different cuttings densities on the critical velocity of particle motion are analyzed experimentally, using a large-scale flow loop. Next, based on a stress analysis of the particles on the cutting bed surface and on the boundary layer flow around the particles, an analytical formula for the surface shear force of the drilling fluid on particles is derived and a critical velocity model for incipient motion is established. Verification is then carried out and combined with the experimental results. This study has important implications for the design of drilling operations and for the management of cuttings transport in oil and gas wells. It can guide the setting and prediction of pump discharge to improve hole-cleaning efficiency.

Funder

Marine Economy Development Foundation of Guangdong Province

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3