An Archive-Guided Equilibrium Optimizer Based on Epsilon Dominance for Multi-Objective Optimization Problems

Author:

Chalabi Nour Elhouda1ORCID,Attia Abdelouahab2,Bouziane Abderraouf2,Hassaballah Mahmoud34ORCID,Alanazi Abed3ORCID,Binbusayyis Adel5ORCID

Affiliation:

1. Computer Science Department, Mohamed Boudiaf University of Msila, Msila 28000, Algeria

2. Computer Science Department, University Mohamed El Bachir El Ibrahimi of Bordj Bou Arreridj, Bordj Bou Arreridj 34000, Algeria

3. Department of Computer Science, College of Computer Engineering and Sciences, Prince Sattam Bin Abdulaziz University, AlKharj 16278, Saudi Arabia

4. Department of Computer Science, Faculty of Computers and Information, South Valley University, Qena 83523, Egypt

5. Department of Software Engineering, College of Computer Engineering and Sciences, Prince Sattam Bin Abdulaziz University, AlKharj 16278, Saudi Arabia

Abstract

In real-world applications, many problems involve two or more conflicting objectives that need to be optimized at the same time. These are called multi-objective optimization problems (MOPs). To solve these problems, we introduced a guided multi-objective equilibrium optimizer (GMOEO) algorithm based on the equilibrium optimizer (EO), which was inspired by control–volume–mass balance models that use particles (solutions) and their respective concentrations (positions) as search agents in the search space. The GMOEO algorithm involves the integration of an external archive that acts as a guide and stores the optimal Pareto set during the exploration and exploitation of the search space. The key candidate population also acted as a guide, and Pareto dominance was employed to obtain the non-dominated solutions. The principal of ϵ-dominance was employed to update the archive solutions, such that they could then guide the particles to ensure better exploration and diversity during the optimization process. Furthermore, we utilized the fast non-dominated sort (FNS) and crowding distance methods for updating the position of the particles efficiently in order to guarantee fast convergence in the direction of the Pareto optimal set and to maintain diversity. The GMOEO algorithm obtained a set of solutions that achieved the best compromise among the competing objectives. GMOEO was tested and validated against various benchmarks, namely the ZDT and DTLZ test functions. Furthermore, a benchmarking study was conducted using cone-ϵ-dominance as an update strategy for the archive solutions. In addition, several well-known multi-objective algorithms, such as the multi-objective particle-swarm optimization (MOPSO) and the multi-objective grey-wolf optimization (MOGWO), were compared to the proposed algorithm. The experimental results proved definitively that the proposed GMOEO algorithm is a powerful tool for solving MOPs.

Funder

Prince Sattam bin Abdulaziz University

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3