Toward Optimal Load Prediction and Customizable Autoscaling Scheme for Kubernetes

Author:

Mondal Subrota Kumar1ORCID,Wu Xiaohai1,Kabir Hussain Mohammed Dipu2,Dai Hong-Ning3ORCID,Ni Kan1,Yuan Honggang4,Wang Ting4

Affiliation:

1. School of Computer Science and Engineering, Macau University of Science and Technology, Taipa, Macau 999078, China

2. Deakin University, Geelong, VIC 3216, Australia

3. Department of Computer Science, Hong Kong Baptist University, Hong Kong, China

4. Software Engineering Institute, East China Normal University, Shanghai 200062, China

Abstract

Most enterprise customers now choose to divide a large monolithic service into large numbers of loosely-coupled, specialized microservices, which can be developed and deployed separately. Docker, as a light-weight virtualization technology, has been widely adopted to support diverse microservices. At the moment, Kubernetes is a portable, extensible, and open-source orchestration platform for managing these containerized microservice applications. To adapt to frequently changing user requests, it offers an automated scaling method, Horizontal Pod Autoscaler (HPA), that can scale itself based on the system’s current workload. The native reactive auto-scaling method, however, is unable to foresee the system workload scenario in the future to complete proactive scaling, leading to QoS (quality of service) violations, long tail latency, and insufficient server resource usage. In this paper, we suggest a new proactive scaling scheme based on deep learning approaches to make up for HPA’s inadequacies as the default autoscaler in Kubernetes. After meticulous experimental evaluation and comparative analysis, we use the Gated Recurrent Unit (GRU) model with higher prediction accuracy and efficiency as the prediction model, supplemented by a stability window mechanism to improve the accuracy and stability of the prediction model. Finally, with the third-party custom autoscaling framework, Custom Pod Autoscaler (CPA), we packaged our custom autoscaling algorithm into a framework and deployed the framework into the real Kubernetes cluster. Comprehensive experiment results prove the feasibility of our autoscaling scheme, which significantly outperforms the existing Horizontal Pod Autoscaler (HPA) approach.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3