Hierarchical Feature Association and Global Correction Network for Change Detection

Author:

Lu Jinquan1,Meng Xiangchao1,Liu Qiang1,Lv Zhiyong2,Yang Gang3ORCID,Sun Weiwei3,Jin Wei1

Affiliation:

1. Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, China

2. School of Computer Science and Engineering, Xi’an University of Technology, Xi’an 710048, China

3. Department of Geography and Spatial Information Techniques, Ningbo University, Ningbo 315211, China

Abstract

Optical satellite image change detection has attracted extensive research due to its comprehensive application in earth observation. Recently, deep learning (DL)-based methods have become dominant in change detection due to their outstanding performance. Remote sensing (RS) images contain different sizes of ground objects, so the information at different scales is crucial for change detection. However, the existing DL-based methods only employ summation or concatenation to aggregate several layers of features, lacking the semantic association of different layers. On the other hand, the UNet-like backbone is favored by deep learning algorithms, but the gradual downscaling and upscaling operation in the mainstream UNet-like backbone has the problem of misalignment, which further affects the accuracy of change detection. In this paper, we innovatively propose a hierarchical feature association and global correction network (HFA-GCN) for change detection. Specifically, a hierarchical feature association module is meticulously designed to model the correlation relationship among different scale features due to the redundant but complementary information among them. Moreover, a global correction module on Transformer is proposed to alleviate the feature misalignment in the UNet-like backbone, which, through feature reuse, extracts global information to reduce false alarms and missed alarms. Experiments were conducted on several publicly available databases, and the experimental results show the proposed method is superior to the existing state-of-the-art change detection models.

Funder

National Natural Science Foundation of China

Zhejiang Provincial Natural Science Foundation of China

Zhejiang Province “Pioneering Soldier” and “Leading Goose” R&D Project

Postdoctoral Research Foundation of China

Ningbo Natural Science Foundation

Ningbo Science and Technology Innovation 2025 Major Special Project

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3