Infrared Small Target Detection Based on a Temporally-Aware Fully Convolutional Neural Network

Author:

Zhang Lei12,Han Peng3,Xi Jiahua3,Zuo Zhengrong3ORCID

Affiliation:

1. Beijing Institute of Tracking and Telecommunication Technology, Beijing 100094, China

2. College of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China

3. School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China

Abstract

In the field of computer vision, the detection of infrared small targets (IRSTD) is a crucial research area that plays an important role in space exploration, infrared warning systems, and other applications. However, the existing IRSTD methods are prone to generating a higher number of false alarms and an inability to accurately locate the target, especially in scenarios with low signal-to-noise ratio or high noise interference. To address this issue, we proposes a fully convolutional-based small target detection algorithm (FCST). The algorithm builds on the anchor-free detection method FCOS and adds a focus structure and a single aggregation approach to design a lightweight feature extraction network that efficiently extracts features for small targets. Furthermore, we propose a feature refinement mechanism to emphasize the target and suppress conflicting information at multiple scales, enhancing the detection of infrared small targets. Experimental results demonstrate that the proposed algorithm achieves a detection rate of 95% and a false alarm rate of 2.32% for IRSTD tasks. To tackle even more complex scenarios, we propose a temporally-aware fully convolutional infrared small target detection (TFCST) algorithm that leverages both spatial and temporal information from sequence images. Building on a single-frame detection network, the algorithm incorporates ConvLSTM units to extract spatiotemporal contextual information from the sequence images, boosting the detection of infrared small targets. The proposed algorithm shows fast detection speed and achieves a 2.73% improvement in detection rate and an 8.13% reduction in false alarm rate relative to the baseline single-frame detection networks.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3