Spatio-Temporal Variation of Critical Relative Humidity Based on Multiple Datasets

Author:

Zhang Weiyuan1ORCID,Li Jiming1,Xu Sihang1,Zhao Yang1,Jian Bida1

Affiliation:

1. Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China

Abstract

Clouds remain an important source of uncertainty in climate simulations, in large part because subgrid processes are not well represented. Critical relative humidity (RHc) is an important metric for subgrid-scale variability in humidity in cloud parameterization. Based on CloudSat and CALIPSO satellite data, we explored the spatial and temporal distribution characteristics of RHc, assessed the ability of ERA-5 and MERRA-2 reanalysis and CMIP-6 climate models to characterise humidity subgrid variability and further explored the influence of meteorological factors and aerosols. The statistical results showed that there was significant variation in the spatial distribution of RHc, with large variations in both latitude and altitude, as well as more pronounced monthly variations, and that there were differences in monthly variations between regions. Both the reanalysis data and the climate models were able to reproduce similar spatial and temporal distribution patterns but differed significantly in their specific values. The temporal correlations with satellite observations were also relatively poor. In addition, aerosols and meteorological conditions affected the distribution of RHc by influencing the cloud fraction at a certain relative humidity level, indicating that their influence needs to be considered in future parameterization schemes.

Funder

Major Program of the National Natural Science Foundation of China

National Science Fund for Excellent Young Scholars

Gansu Provincial Department of Education Outstanding Graduate Students “Innovation Star” Project

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3