High-Resolution Ratoon Rice Monitoring under Cloudy Conditions with Fused Time-Series Optical Dataset and Threshold Model

Author:

Zhao Rongkun12ORCID,Wang Yue1,Li Yuechen13ORCID

Affiliation:

1. Chongqing Engineering Research Center for Remote Sensing Big Data Application, Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station, School of Geographical Sciences, Southwest University, Chongqing 400715, China

2. Key Laboratory of Agricultural Remote Sensing, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China

3. Key Laboratory of Monitoring, Evaluation and Early Warning of Territorial Spatial Planning Implementation, Ministry of Natural Resources, Chongqing 401147, China

Abstract

Ratoon rice, an effective rice cultivation system, allows paddy rice to be harvested twice from the same stubble, playing an important role in ensuring food security and adapting to climate change with its unique growth characteristics. However, there is an absence of research related to remote-sensing monitoring of ratoon rice, and the presence of other rice cropping systems (e.g., double-season rice) with similar characteristics poses a hindrance to the accurate identification of ratoon rice. Furthermore, cloudy and rainy regions have limited available remote-sensing images, meaning that remote-sensing monitoring is limited. To address this issue, taking Yongchuan District, a typical cloud-prone region in Chongqing, China, as an example, this study proposed the construction of a time-series optical dataset using the Modified Neighborhood Similar Pixel Interpolator (MNSPI) method for cloud-removal interpolation and the Flexible Spatiotemporal DAta Fusion (FSDAF) model for fusing multi-source optical remote-sensing data, in combination with vegetation index features and phenological information to build a threshold model to map ratoon rice at high-resolution (10 m). The mapping performance of ratoon rice was evaluated using independent field samples to obtain the overall accuracy and kappa coefficient. The findings indicate that the combination of the MNSPI method and FSDAF model had a stable and effective performance, characterized by high correlation coefficient (r) values and low root mean square error (RMSE) values between the restored/predicted images and the true images. Notably, it was possible to effectively capture the distinct characteristics of ratoon rice in cloudy and rainy regions using the proposed threshold model. Specifically, the identified area of ratoon rice in the study region was 194.17 km2, which was close to the official data (158–180 km2), and the overall accuracy and kappa coefficient of ratoon rice identification result were 90.73% and 0.81, respectively. These results demonstrate that our proposed threshold model can effectively distinguish ratoon rice during vital phenological stages from other crop types, enrich the technical system of rice remote-sensing monitoring, and provide a reference for agricultural remote-sensing applications in cloudy and rainy regions.

Funder

the Natural Science Foundation of Chongqing

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3