Infrared Dim Star Background Suppression Method Based on Recursive Moving Target Indication

Author:

Zhang Lei1,Rao Peng23,Hong Yang234,Chen Xin23,Jia Liangjie234

Affiliation:

1. College of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

2. Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China

3. Key Laboratory of Intelligent Infrared Perception, Chinese Academy of Sciences, Shanghai 200083, China

4. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Space-based infrared target detection can provide full-time and full-weather observation of targets, thus it is of significance in space security. However, the presence of stars in the background can severely affect the accuracy and real-time performance of infrared dim and small target detection, making star suppression a key technology and hot spot in the field of space target detection. The existing star suppression algorithms are all oriented towards the detection before track method and rely on the single image properties of the stars. They can only effectively suppress bright stars with a high signal-to-noise ratio (SNR). To address this problem, we propose a new method for infrared dim star background suppression based on recursive moving target indication (RMTI). Our proposed method is based on a more direct analysis of the image sequence itself, which will lead to more robust and accurate background suppression. The method first obtains the motion information of stars through satellite motion or key star registration. Then, the advanced RMTI algorithm is used to enhance the stars in the image. Finally, the mask of suppressing stars is generated by an accumulation frame adaptive threshold. The experimental results show that the algorithm has a less than 8.73% leakage suppression rate for stars with an SNR ≤ 2 and a false suppression rate of less than 2.3%. The validity of the proposed method is verified in real data. Compared with the existing methods, the method proposed in this paper can stably suppress stars with a lower SNR.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3