Abstract
In this work, a Lyapunov-based economic model predictive control (LEMPC) method is developed to address economic optimality and closed-loop stability of nonlinear systems using machine learning-based models to make predictions. Specifically, an ensemble of recurrent neural network (RNN) models via a k-fold cross validation is first developed to capture process dynamics in an operating region. Then, the LEMPC using an RNN ensemble is designed to maintain the closed-loop state in a stability region and optimize process economic benefits simultaneously. Parallel computing is employed to improve computational efficiency of real-time implementation of LEMPC with an RNN ensemble. The proposed machine-learning-based LEMPC method is demonstrated using a nonlinear chemical process example.
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
40 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献