Author:
Chai Jiye,Yu Xinru,Zhao Jian,Sun Aili,Shi Xizhi,Li Dexiang
Abstract
The well-dispersive and superparamagnetic Fe3O4-nanocrystals (Fe3O4-NCs) which could significantly enhance the anodic electrochemiluminescence (ECL) behavior of luminol, were synthesized in this study. Compared to ZnS, ZnSe, CdS and CdTe nanoparticles, the strongest anodic ECL signals were obtained at +1.6 V on the Fe3O4-NCs coated glassy carbon electrode. The ECL spectra revealed that the strong ECL resonance energy transfer occurred between luminol and Fe3O4-NCs. Furthermore, under the optimized ECL experimental conditions, such as the amount of Fe3O4-NCs, the concentration of luminol and the pH of supporting electrolyte, BPA exhibited a stronger distinct ECL quenching effect than its structural analogs and a highly selective and sensitive ECL sensor for the determination of bisphenol A (BPA) was developed based on the Fe3O4-NCs. A good linear relationship was found between the ECL intensity and the increased BPA concentration within 0.01–5.0 mg/L, with a correlation coefficient of 0.9972. The detection limit was 0.66 × 10−3 mg/L. Good recoveries between 96.0% and 105.0% with a relative standard deviation of less than 4.8% were obtained in real water samples. The proposed ECL sensor can be successfully employed to BPA detection in environmental aqueous samples.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献