Accurate Multi-Channel QCM Sensor Measurement Enabled by FPGA-Based Embedded System Using GPS

Author:

Bourennane Adrien1,Tanougast Camel1ORCID,Diou Camille1ORCID,Gorse Jean2

Affiliation:

1. LCOMS, Université de Lorraine, 57000 Metz, France

2. Pesage Lorrain Continu et Discontinu, 57070 Saint-Julien-Lès-Metz, France

Abstract

This paper presents a design and implementation proposal for a real-time frequency measurement system for high-precision, multi-channel quartz crystal microbalance (QCM) sensors using a field programmable gate array (FPGA). The key contribution of this work lies in the integration of a frequency measurement and mass resolution computation based on Global Positioning System (GPS) signals within a single FPGA chip, utilizing Input/Output Blocks to incorporate logic QCM oscillator circuits. The FPGA design enables parallel processing, ensuring accurate measurements, faster calculations, and reduced hardware complexity by minimizing the need for external components. As a result, a cost-effective and accurate multi-channel sensor system is developed, serving as a reconfigurable standalone measurement platform with communication capabilities. The system is implemented and tested using the FPGA Xilinx Virtex-6, along with multiple QCM sensors. The implementation on a Xilinx XC6VLX240T FPGA achieves a maximum frequency of 324 MHz and consumes a dynamic power of 120 mW. Notably, the design utilizes a modest number of resources, requiring only 188 slices, 733 flip-flops, and 13 IOBs to perform a double-channel sensor microbalance. The proposed system meets the precision measurement requirements for QCM sensor applications, exhibiting low measurement error when monitoring QCM frequencies ranging from 1 to 50 MHz, with an accuracy of 0.2 ppm and less than 0.1 Hz.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference35 articles.

1. Precision Measurement Physics: Physics That Precision Matters;Zhan;Natl. Sci. Rev.,2020

2. Gas and Humidity Sensing with Quartz Crystal Microbalance (QCM) Coated with Graphene-Based Materials—A Mini Review;Fauzi;Sens. Actuators A Phys.,2021

3. Burda, I. (2022). Advanced Impedance Spectroscopy for QCM Sensor in Liquid Medium. Sensors, 22.

4. GO/Cu2O Nanocomposite Based QCM Gas Sensor for Trimethylamine Detection under Low Concentrations;Chen;Sens. Actuators B Chem.,2018

5. Applications of Electronic Nose (e-Nose) and Electronic Tongue (e-Tongue) in Food Quality-Related Properties Determination: A Review;Tan;Artif. Intell. Agric.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3