Self-Organized Patchy Target Searching and Collecting with Heterogeneous Swarm Robots Based on Density Interactions

Author:

Xiang Yalun1ORCID,Lei Xiaokang1,Duan Zhongxing1,Dong Fangnan1,Gao Yanru1

Affiliation:

1. College of Information and Control Engineering, Xi’an University of Architecture and Technology, Xi’an 710311, China

Abstract

The issue of searching and collecting targets with patchy distribution in an unknown environment is a challenging task for multiple or swarm robots because the targets are unevenly dispersed in space, which makes the traditional solutions based on the idea of path planning and full spatial coverage very inefficient and time consuming. In this paper, by employing a novel framework of spatial-density-field-based interactions, a collective searching and collecting algorithm for heterogeneous swarm robots is proposed to solve the challenging issue in a self-organized manner. In our robotic system, two types of swarm robots, i.e., the searching robots and the collecting robots, are included. To start with, the searching robots conduct an environment exploration by means of formation movement with Levy flights; when the targets are detected by the searching robots, they spontaneously form a ring-shaped envelope to estimate the spatial distribution of targets. Then, a single robot is selected from the group to enter the patch and locates at the patch’s center to act as a guiding beacon. Subsequently, the collecting robots are recruited by the guiding beacon to gather the patch targets; they first form a ring-shaped envelope around the target patch and then push the scattered targets inward by using a spiral shrinking strategy; in this way, all targets eventually are stacked near the center of the target patch. With the cooperation of the searching robots and the collecting robots, our heterogeneous robotic system can operate autonomously as a coordinated group to complete the task of collecting targets in an unknown environment. Numerical simulations and real swarm robot experiments (up to 20 robots are used) show that the proposed algorithm is feasible and effective, and it can be extended to search and collect different types of targets with patchy distribution.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3