Seismic Data Query Algorithm Based on Edge Computing

Author:

Quan Tenglong1,Zhang Huifeng1,Yu Yonghao2,Tang Yongwei23,Liu Fushun1,Hao Hao2

Affiliation:

1. Shandong Earthquake Agency, Jinan 250014, China

2. Shandong Computer Science Center (National Supercomputing Center in Jinan), Qilu University of Technology Shandong Academy of Sciences), Jinan 250353, China

3. Key Laboratory of High Efficiency and Clean Mechanical Manufacture, School of Mechanical Engineering, Ministry of Education, Shandong University, Jinan 250061, China

Abstract

Edge computing can reduce the transmission pressure of wireless networks in earthquakes by pushing computing functionalities to network edges and avoiding the data transmission to cloud servers. However, this also leads to the scattered storage of data content in each edge server, increasing the difficulty of content search. This paper investigates the seismic data query problem supported by edge computing. We first design a lookup mechanism based on bloom filter, which can quickly determine if there is the information that we need on a particular edge server. Then, the MEC-based data query problem is formulated as an optimization problem whose goal is to minimize the long-term average task delay with the constraints of computing capacity of edge servers. To reduce the complexity of problem, we further transform it as a Markov Decision Process by defining state space, action space and reward function. A novel DQN-based seismic data query algorithm is proposed to solve problem effectively. Extensive simulation-based testing shows that the proposed algorithm performances better when compared with two state-of-the-art solutions.

Funder

National Natural Science Foundation of Shandong Province

QLU Pilot Project of Integration of Science, Education and Production

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3