IoT Device Identification Method Based on Causal Inference

Author:

Wang Xingkui1,Wu Yunhao2,Yu Dan2,Yang Yuli2,Ma Yao2,Chen Yongle2

Affiliation:

1. College of Software, Taiyuan University of Technology, Taiyuan 030024, China

2. College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China

Abstract

With the development of 5G, the number of IoT (Internet of Things) devices connected to the Internet will grow explosively. However, due to the vulnerability of the devices, attackers can launch attacks on the vulnerable IoT devices, causing great impact on the security of the network environment. Fine-grained identification of IoT devices can help network administrators set up appropriate security policies based on the functionality and heterogeneity of the devices, while enabling timely updates and upgrades for devices with security vulnerabilities or the isolation of these dangerous devices. However, most of the existing IoT device identification methods rely on a priori knowledge or expert experience in selecting features, which cannot weigh the identification performance and labor cost. In this paper, we design a fine-grained identification method for IoT devices based on causal inference, which automatically extracts key features in the protocol fields of device communication from the perspective of causality and then classifies key features using a Stacking integrated learning method to achieve high-precision and fine-grained device identification. Through experimental verification, the proposed method achieves 96.3% and 97.7% device model identification accuracy under HTTP/TCP and SSH/TCP protocol clusters.

Funder

Fundamental Research Program of Shanxi Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3