MPC-ECMS Energy Management of Extended-Range Vehicles Based on LSTM Multi-Signal Speed Prediction

Author:

Lu Laiwei1ORCID,Zhao Hong1,Liu Xiaotong1,Sun Chuanlong1,Zhang Xinyang2,Yang Haixu2

Affiliation:

1. College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China

2. School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China

Abstract

Rule-based energy management strategies not only make little use of the efficient area of engines and generators but also need to perform better planning in the time domain. This paper proposed a multi-signal vehicle speed prediction model based on the long short-term memory (LSTM) network, improving the accuracy of vehicle speed prediction by considering multiple signals. First, various signals were collected by simulating the vehicle model, and a Pearson correlation analysis was performed on the collected multiple signals in order to improve the model’s prediction accurate, and the appropriate signal was selected as the input to the prediction model. The experimental results indicate that the prediction method greatly improves the predictive effect compared with the support vector machine (SVM) vehicle speed prediction method. Secondly, the method was combined with the model predictive control-equivalent consumption strategy (MPC-ECMS) to form a control strategy suitable for power maintenance conditions enabling the equivalent factor to be adjusted adaptively in real-time and the target state of charge (SoC) value to be set. Pontryagin minimum principle (PMP) enables the battery to calculate the range extender output power at each moment. PMP, as the core algorithm of ECMS, is a common real-time optimal control algorithm. Then, taking into account the engine’s operating characteristics, the calculated range extender power was filtered to make the engine run smoothly. Finally, hardware-in-the-loop simulation (HIL) was used to verify the model. The simulation results demonstrate that this method uses less fuel than the equivalent fuel consumption minimum strategy (ECMS) by 1.32%, 9.47% when compared to the power-following control strategy, 15.66% when compared to the SVM-MPC-ECMS, and only 3.58% different from the fuel consumption of the dynamic programming (DP) control algorithm. This shows that this energy management approach can significantly improve the overall vehicle fuel economy.

Funder

the Key Research and Development Plan of Shandong Province of China

Qingdao Civi Science and Technology Plan

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3