Failure Propagation Prediction of Complex Electromechanical Systems Based on Interdependence

Author:

Xia Yu1,Yang Nan2,Wang Hu3,Wang Xiaoli4,Cui Mengzhen3,Li Man2ORCID

Affiliation:

1. Information Center, Guoneng Shuohuang Railway Development Co., Ltd., Suning, Cangzhou 062350, China

2. State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing 100044, China

3. Institute of Computing Technology, China Academy of Railway Sciences Corporation Limited, Beijing 100081, China

4. Beijing Jingwei Information Technology Co., Ltd., Beijing 100081, China

Abstract

Interdependence is an inherent feature of the cyber-physical system. Small damage to one component in the system may affect several other components, leading to a series of failures, thus collapsing the entire system. Therefore, the system failure is often caused by the failure of one or more components. In order to solve this problem, this paper focuses on a failure propagation probability prediction method for complex electromechanical systems, considering component states and dependencies between components. Firstly, the key component set in the system is determined based on the reliability measure. Considering the three coupling mechanisms of mechanical, electrical, and information, a topology network model of the system is constructed. Secondly, based on the topology network model and fault data, the calculation method of influence degree between components is proposed. Three state parameters are used to express the risk point state of each component in the system through mathematical representation, and the correlation coefficient between the risk point state parameters is calculated and measured based on the uncertainty evaluation. Then, the influence matrix between the system risk points is constructed, and the fault sequence is predicted by using the prediction function of an Artificial Neural Network (ANN) to obtain the fault propagation probability. Finally, the method is applied to the rail train braking system, which verifies that the proposed method is feasible and effective.

Funder

Guoneng Group Science and Technology Innovation Project

Youth Program of the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3