Multimodal Fine-Grained Transformer Model for Pest Recognition

Author:

Zhang Yinshuo12,Chen Lei1,Yuan Yuan1ORCID

Affiliation:

1. Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China

2. Science Island Branch, Graduate School of University of Science and Technology of China, Hefei 230026, China

Abstract

Deep learning has shown great potential in smart agriculture, especially in the field of pest recognition. However, existing methods require large datasets and do not exploit the semantic associations between multimodal data. To address these problems, this paper proposes a multimodal fine-grained transformer (MMFGT) model, a novel pest recognition method that improves three aspects of transformer architecture to meet the needs of few-shot pest recognition. On the one hand, the MMFGT uses self-supervised learning to extend the transformer structure to extract target features using contrastive learning to reduce the reliance on data volume. On the other hand, fine-grained recognition is integrated into the MMFGT to focus attention on finely differentiated areas of pest images to improve recognition accuracy. In addition, the MMFGT further improves the performance in pest recognition by using the joint multimodal information from the pest’s image and natural language description. Extensive experimental results demonstrate that the MMFGT obtains more competitive results compared to other excellent models, such as ResNet, ViT, SwinT, DINO, and EsViT, in pest recognition tasks, with recognition accuracy up to 98.12% and achieving 5.92% higher accuracy compared to the state-of-the-art DINO method for the baseline.

Funder

National Natural Science Foundation of China

National Basic Science Data Center

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference38 articles.

1. Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions;Alzubaidi;J. Big Data,2021

2. Recognition pest by image-based transfer learning;Dawei;J. Sci. Food Agric.,2019

3. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., and Gelly, S. (2021, January 3–7). An image is worth 16 × 16 words: Transformers for image recognition at scale. Proceedings of the 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria.

4. Pest identification via deep residual learning in complex background;Cheng;Comput. Electron. Agric.,2017

5. Feature Reuse Residual Networks for Insect Pest Recognition;Ren;IEEE Access,2019

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3