Beamsteering-Aware Power Allocation for Cache-Assisted NOMA mmWave Vehicular Networks

Author:

Cao Wei1ORCID,Gu Jinyuan2ORCID,Gu Xiaohui1ORCID,Zhang Guoan1ORCID

Affiliation:

1. School of Information Science and Technology, Nantong University, Nantong 226019, China

2. Kangda College, Nanjing Medical University, Lianyungang 222000, China

Abstract

Cache-enabled networks with multiple access (NOMA) integration have been shown to decrease wireless network traffic congestion and content delivery latency. This work investigates optimal power control in cache-assisted NOMA millimeter-wave (mmWave) vehicular networks, where mmWave channels experience double-Nakagami fading and the mmWave beamforming is subjected to beamsteering errors. We aim to optimize vehicular quality of service while maintaining fairness among vehicles, through the maximization of successful signal decoding probability for paired vehicles. A comprehensive analysis is carried out to understand the decoding success probabilities under various caching scenarios, leading to the development of optimal power allocation strategies for diverse caching conditions. Moreover, an optimal power allocation is proposed for the single-antenna case, for exploiting the cached data as side information to cancel interference. The robustness of our proposed scheme against variations in beamforming orientation is assessed by studying the influence of beamsteering errors. Numerical results demonstrate the effectiveness of the proposed cache-assisted NOMA scheme in enhancing cache utility and NOMA efficiency, while underscoring the performance gains achievable with larger cache sizes.

Funder

National Natural Science Foundation of China

Class C project

Qing Lan Project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3